Fast sequential implementation of "neural-gas" network for vector quantization

نویسندگان

  • Clifford Sze-Tsan Choy
  • Wan-Chi Siu
چکیده

Although the “neural-gas” network proposed by Martinetz et al. in 1993 has been proven for its optimality in vector quantizer design and has been demonstrated to have good performance in time-series prediction, its high computational complexity (N logN) makes it a slow sequential algorithm. In this letter, we suggest two ideas to speedup its sequential realization: 1) using a truncated exponential function as its neighborhood function and 2) applying a new extension of the partial distance elimination method (PDE). This fast realization is compared with the original version of the neural-gas network for codebook design in image vector quantization. The comparison indicates that a speedup of five times is possible, while the quality of the resulting codebook is almost the same as that of the straightforward realization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Neural Gas training in analog VLSI

The design and implementation of a vector quantization neural network is presented. The training algorithm is Neural Gas. The implementation is fully parallel and mainly analog (only control function and long-term memory are digital). A sequential implementation of the required sorting function allows to compute the Neural Gas updating step.

متن کامل

Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network

In this paper, an original method (GNG-T) extended from Growing Neural Gas [6] is presented. The method performs continuously vector quantization over a distribution that changes over time. It deals with both sudden changes and continuous ones, and is thus suited for the video tracking framework, where continuous tracking is required as well as fast adaptation to incoming and outgoing people. T...

متن کامل

Tracking fast changing non-stationary distributions with a topologically adaptive neural network: application to video tracking

In this paper, an original method named GNG-T, extended from GNG-U algorithm by [1] is presented. The method performs continuously vector quantization over a distribution that changes over time. It deals with both sudden changes and continuous ones, and is thus suited for video tracking framework, where continuous tracking is required as well as fast adaptation to incoming and outgoing people. ...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

Supervised Neural Gas for Learning Vector Quantization

In this contribution we combine approaches the generalized leraning vector quantization (GLVQ) with the neighborhood orientented learning in the neural gas network (NG). In this way we obtain a supervised version of the NG what we call supervised NG (SNG). We show that the SNG is more robust than the GLVQ because the neighborhood learning avoids numerically instabilities as it may occur for com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Communications

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1998